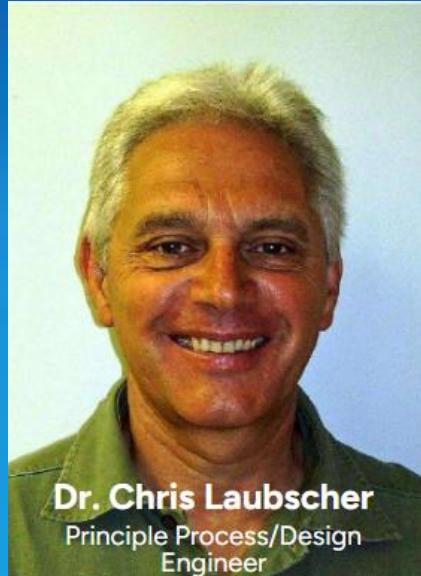


Wastewater Treatment Plant Solutions

- Presentation by:
- **Marno Raath – RAA, Director**
- 13 August 2024
- New Zealand Trade & Industrial Waters Forum


Who we are

Marno Raath
Founder

Cormac Tague
Civil Engineer

Dr. Chris Laubscher
Principle Process/Design
Engineer

Heiner Domnick
Principle Bioremediation
Advisor

Who we are

OUR ASSOCIATES

Parkinson & Holland

Evers Engineering

Dreenan Civil

aquAero New Zealand

NZ Trade & Industrial Waters Forum

Blue Planet Labs

NZ Trade & Industrial Waters Forum

Why are our services needed?

NZ Trade & Industrial Waters Forum

Presentation Points

1. How the Combined Works (CW) system works
2. Performance parameters
3. Benefits to users
4. Open discussion

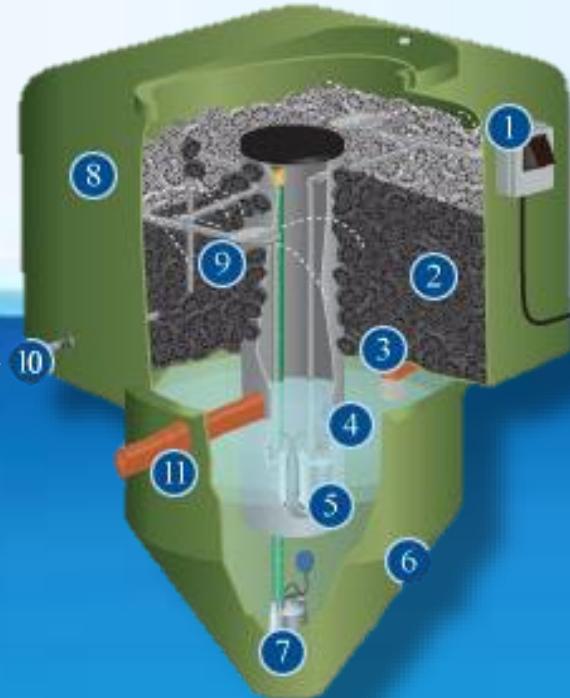
1. How the CW system works

1. Containerized CW System
2. Retrofit CW System
3. Permanent CW System

Exterior

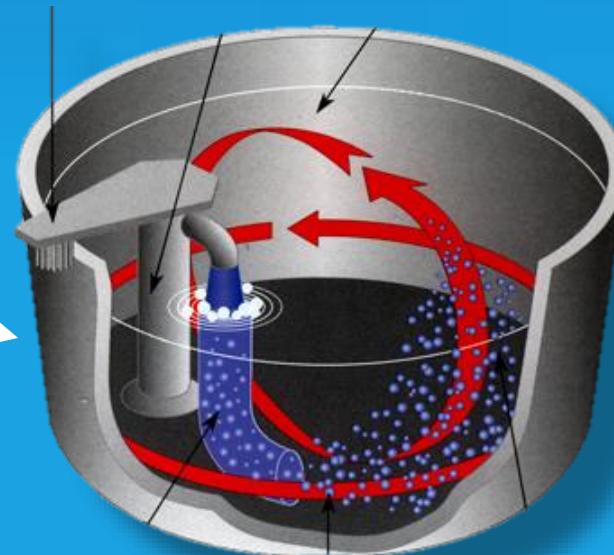
600 KL/day WWTP

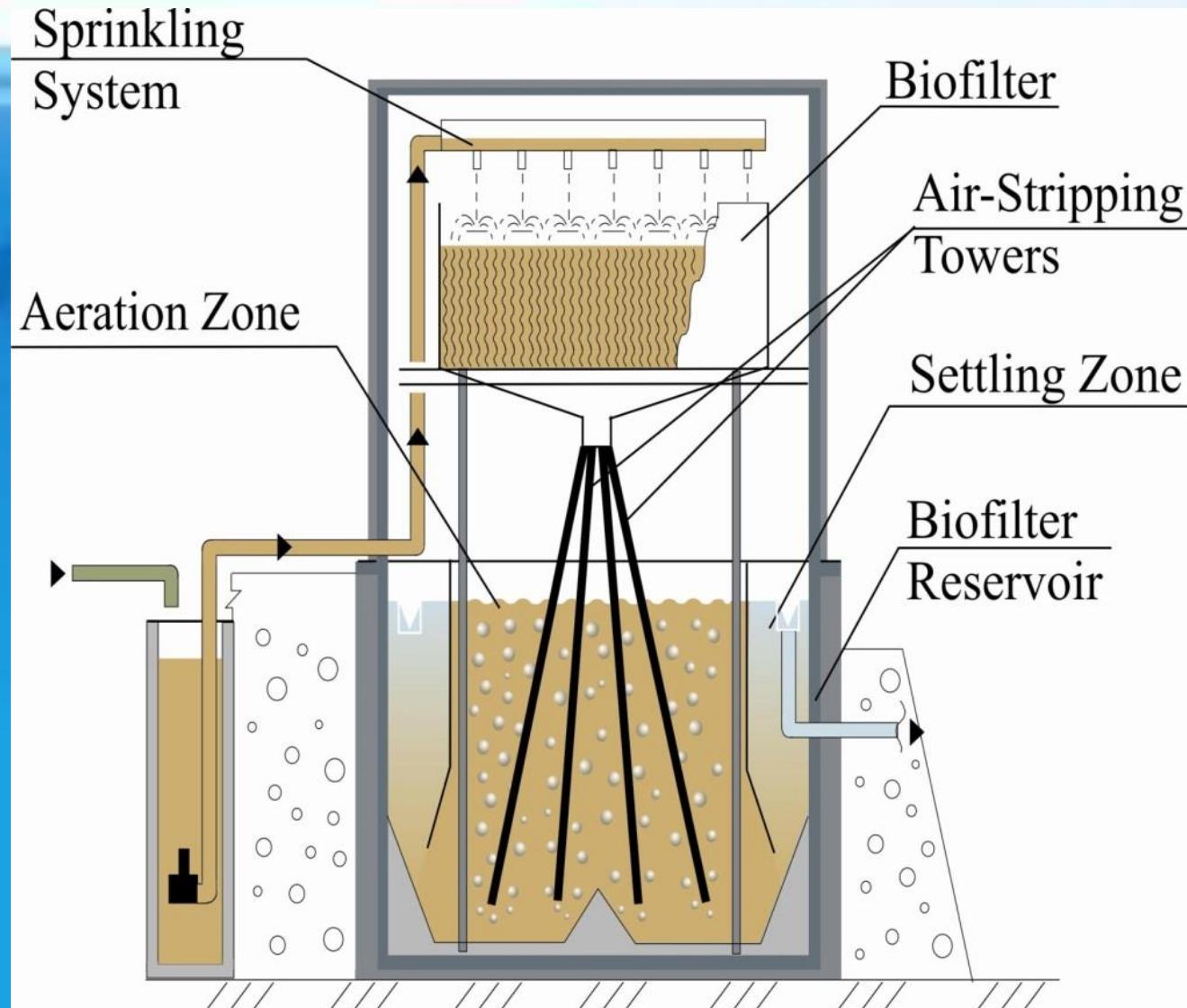
Exterior


25 ML/day WWTP in Krasnodar Territory

Interior

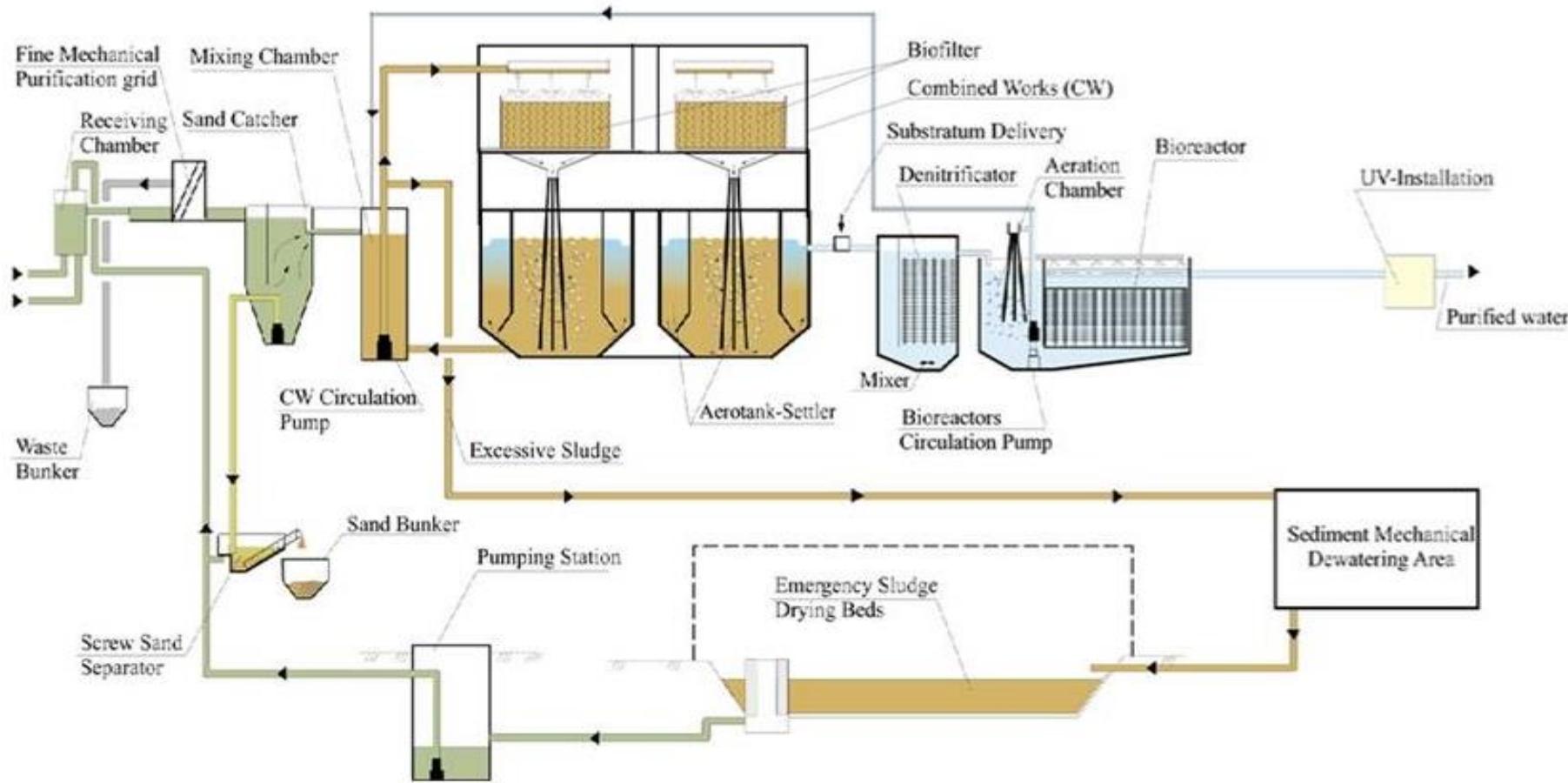
Componentry Involved


Biofilter


plus

Aeration Tank

Working together



How this combination works

- International Patent Consignee
- Perpetual Self-Sufficient Maintenance Free Wastewater Treatment System

General Process Flow

2. How the CW system Performs

Appendix 6: Typical effluent quality following various levels of treatment

Treatment	BOD mg/l	Total Suspended Solids mg/l	Total Nitrogen mg/l	Total Phosphorus mg/l	<i>E. coli</i> org/100 ml	Anionic Surfactants mg/l	Oil and Grease mg/l
Raw Wastewater	150-500	150-450	35-60	6-16	10^7 - 10^8	5-10	50-100
A	140-350	140-350					
B	120-250	80-200	30-55	6-14	10^6 - 10^7		30-70
C	20-30	25-40	20-50	6-12	10^5 - 10^6	<5	< 10
D	5-20	5-20	10-20	<2			< 5
E					$< 10^3$		
F	2-5	2-5	< 10	< 1	$< 10^2$		< 5

Table 7: Typical effluent quality for various levels of treatment

NOTES: PLANT TYPE - TYPICAL TREATMENT PROCESSES

Treatment Process Category

- A Pre Treatment
- B Primary Treatment
- C Secondary Treatment
- D Nutrient removal
- E Disinfection
- F Advanced wastewater treatment

ABBREVIATIONS

- Parameters to be removed
- Gross solids, some of the readily settleable solids plus readily settleable solids
- Most solids and BOD
- Nutrients after removal of solids
- Bacteria and viruses
- Treatment to further reduce selected parameters
- BOD** = Biochemical Oxygen Demand

Yes, we can achieve a Median 3mg/L for TN by increasing Anaerobic Reactor, which reduces incoming N to achieve effluent TN.

Primary sedimentation

National Water Quality Management Strategy
 Australian Guidelines for Sewage Systems
 Effluent Management, 1997

Table 7, Pg 42

Operating Climate Temp

High Temperatures 49°C

Month	Climate data for Turkestan												[hide]
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Record high °C (°F)	18.7 (65.7)	26.4 (79.5)	30.7 (87.3)	36.3 (97.3)	40.5 (104.9)	46.9 (116.4)	49.1 (120.4)	46.5 (115.7)	41.9 (107.4)	35.3 (95.5)	27.9 (82.2)	21.6 (70.9)	49.1 (120.4)
Average high °C (°F)	1.6 (34.9)	5.3 (41.5)	13.5 (56.3)	21.9 (71.4)	28.3 (82.9)	34.3 (93.7)	36.3 (97.3)	35.0 (95)	28.8 (83.8)	20.3 (68.5)	11.4 (52.5)	3.4 (38.1)	20.0 (68)
Daily mean °C (°F)	-3.1 (26.4)	-0.2 (31.6)	6.9 (44.4)	14.8 (58.6)	21.0 (69.8)	26.8 (80.2)	28.7 (83.7)	27.0 (80.6)	20.4 (68.7)	11.9 (53.4)	4.9 (40.8)	-1.7 (28.9)	13.1 (55.6)
Average low °C (°F)	-7.2 (19)	-4.6 (23.7)	1.3 (34.3)	8.1 (46.6)	13.6 (56.5)	18.2 (64.8)	20.1 (68.2)	18.2 (64.8)	11.7 (53.1)	4.4 (39.9)	-0.4 (31.3)	-5.7 (21.7)	6.5 (43.7)
Record low °C (°F)	-33.6 (-28.5)	-38.6 (-37.5)	-28.3 (-18.9)	-8.4 (16.9)	-4.3 (24.3)	3.1 (37.6)	6.4 (43.5)	3.4 (38.1)	-5.5 (22.1)	-14.3 (6.3)	-31.8 (-25.2)	-33.0 (-27.4)	-38.6 (-37.5)
Average precipitation mm (inches)	22 (0.87)	26 (1.02)	28 (1.1)	23 (0.91)	24 (0.94)	5 (0.2)	6 (0.24)	3 (0.12)	3 (0.12)	10 (0.39)	26 (1.02)	27 (1.06)	203 (7.99)
Average rainy days	5	6	8	8	7	4	2	1	2	4	7	6	60
Average snowy days	7	6	2	0.3	0	0	0	0	0	0.3	2	5	23
Average relative humidity (%)	79	73	63	50	43	33	34	32	36	51	69	79	54
Mean monthly sunshine hours	138	155	199	247	337	382	401	383	315	248	167	122	3,094

Source #1: Погода и Климат (Weather and Climate) [9]

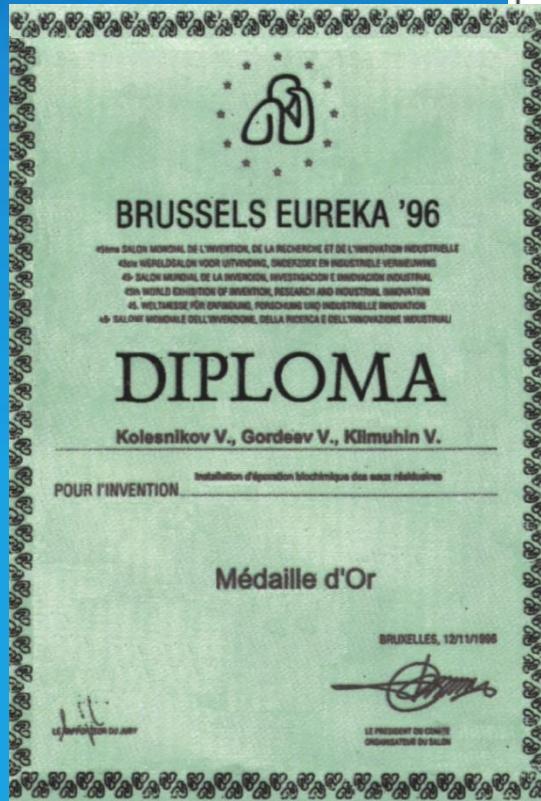
Source #2: NOAA (sun, 1961–1990) [10]

79% Relative Humidity

Building Standards & Codes

Approved International Standards

EURO-ASIAN COUNCIL
for standardization, metrology and certification
official website


International Publications

- 1) V.P Kolesnikov, E.V Vilson "Modern development processes of sewage treatment plants in combined works" publishing house "South", Rostov-on-Don, Russia, 2005.
- 2) Modern development of operation processes of sewage purification at combined installations, by Vladimir Kolesnikov & Elena Vilson, 28 Sept 2004.
- 3) V.P Kolesnikov, E.V Vilson, V.K Gordeev-Gavrikov "Combined works with biofilters and aerotanks", magazine "ZHKH" № 12, Part I., Moscow, Russia, 2003.
- 4) GOST 17.4.3.07-2001 Nature Conservancy. Soils. Requirements for the properties of sewage sludge when used as fertilizer, GosStandart, 2001.
- 5) SanPiN 2.1.7.573-96 Hygienic requirements for the use of wastewater and rainfall for irrigation and fertilizers, Moscow, Russia, 1996.

Awards & Recognitions

- Gold Medal for Best New Technology – Brussels, International Technology Conference, 2003.

International Patents

US patents 13/065,089 issued:

- Canada;
- Argentina 20110100172,
- Brazil PI1103172,
- China 201110069244.1;
- India MUMNP|2010;
- Australia AU2010224357,
- Israel 206218;
- Ukraine 201104106/1,

CIS countries 201100002 (Eurasian patent):

- Egypt 1497/2012;
- Turkey 2012/09197,
- Libya 2012/4532,
- South Africa 2012/04073,

186+ Worldwide Installations

Additional Advantages

- 1. 100% Natural Cleaning with No Chemicals.**
- 2. 100% Fully Automated System.**
- 3. Minimal Internal Moving Parts.**
- 4. High Effluent Performance Results.**
- 5. Scalable and Adaptable.**
- 6. Small Footprint Size Requiring Less Land.**
- 7. Small Sanitation Perimeter Zone 8-26m.**
- 8. Enclosed & Odorless.**
- 9. Minimal Operational Staff.**
- 10. Low Electricity Costs.**
- 11. Low Operations & Maintenance Costs.**
- 12. Low Construction Costs.**
- 13. An Investment that Makes Huge Net Profits \$\$\$.**

3. Benefits to End Users

1. Allows for control of timeframes and removes the constraints and delays of local government (Pre-Developer Engagement)
2. Insulates developments from unforeseen costs (such as IGC increases)
3. Small footprint, so keeps land costs low
4. Genuine Environmental benefits
5. Significant \$\$\$ savings in construction and operation relative to available alternatives.

Competitive Advantage

[5 ML/day WWTP]

Electricity Consumption Comparison

#	System Type	Electricity Usage (per ML kWh)	WWTP Capacity (ML)	Total Electricity Consumption (kWh/hr)	Daily Electricity Consumption (kWh/d)	Electricity Rate (per kWh)	Daily Electricity Costs (per day)	Annual Electricity Consumption (kWh)	Annual Electricity Costs (per year)	Total Savings (per year)
1	MBR	315	4	1,260	30,240.00	\$0.24	\$7,257.60	11,037,600	\$2,649,024.00	\$0.00
2	CWS	25.2	5	126	3,024.00	\$0.24	\$725.76	1,103,760	\$264,902.40	\$2,384,121.60
3	CWS with 40% Solar Energy	15.12	5	76	1,814.40	\$0.24	\$435.46	662,256	\$158,941.44	\$2,490,082.56

Notes:

Aeration takes up to 50% of the total energy consumption, 35%-90% of which is commonly used for membrane aeration or air scouring. [117,119,120] Bailey et al. [121] reported that the energy consumption of a 4,000 m³ / day MBR was 1260 kWh/day with 300 kWh/day for air scouring alone. ...

https://www.researchgate.net/publication/221737301_Specific_energy_consumption_of_membrane_bioreactor_MBR_for_sewage_treatment

Minimal
Annual
Electricity
Costs

REVENUE (SALES):							
#	Description	State Govt Bulk Water Charge (rate/kL)	City Council Water Charge (rate/kL)	City Council Customer Price (rate x 0.9) (rate/kL)	WWTP Capacity (ML/day)	Total Revenue (Per Day)	Total Revenue (Per Year)
1.1	Local City Council Revenue	\$3.301	\$1.181	\$4.034	5	\$20,169	\$7,361,685
INITIAL CAPITAL INVESTMENT (DESIGN & CONSTRUCTION COSTS):							
#	Description	MBR System			CWS System		
		WWTP Capacity (ML/day)	Price (Per ML)	Greenfield Turnkey Price	WWTP Capacity (ML/day)	Price Per ML)	Greenfield Turnkey Price
Construction Costs:							
2.1	Design & Construction Costs	4	\$10,927,500	\$43,710,000	5	\$5,394,000	\$26,970,000
*figures are indicative based on site conditions.				Subtotal		Subtotal	\$26,970,000
RUNNING COSTS (O&M COSTS):							
#	Description	MBR System			CWS System		
		Quantity	Rate	Total	Quantity	Rate	Total
3.1	Electricity Consumption	1.0	\$2,649,024	\$2,649,024	1.0	\$264,902	\$264,902
3.2	Sludge Desposal	1.0	\$120,000	\$120,000	1.0	\$120,000	\$120,000
3.3	Filter Maintenance	1.0	\$465,000	\$465,000	0.0	\$465,000	\$0
3.4	Blowers	1.0	\$18,000	\$18,000	0.0	\$18,000	\$0
3.5	Mechanical Equipment	1.0	\$15,000	\$15,000	0.5	\$15,000	\$7,500
3.6	Facility Maintenance	1.0	\$5,000	\$5,000	1.0	\$5,000	\$5,000
3.7	Grounds	1.0	\$3,500	\$3,500	1.0	\$3,500	\$3,500
3.8	Lab Tests	1.0	\$20,000	\$20,000	1.0	\$20,000	\$20,000
3.9	Operational Staff (FTE)	7.0	\$80,000	\$560,000	3.0	\$80,000	\$240,000
			Subtotal	\$3,855,524	3.0	Subtotal	\$660,902

Timeframes

Phase 1

Comprehensive Report:

- Prelim Design Dwgs & Calculations.
- Detail Costs.
- Estimate Time Sch.
- Plant & Equipment.

2 months

Phase 2

Construction Dwgs & Building Permit:

- Detailed Drawings and Specifications.
- Engineering Calculations.
- Consenting.

3-6 months

Phase 3

Construction & Commissioning:

- Earthworks.
- Civil Works.
- Drainage Works.
- Building Works.
- MEP Works.
- Commissioning.

6-10 months

Phase 4

Maintenance, Monitoring & Reporting:

- Maintenance Schedule.
- Performance Measures.
- Quarterly & Annual Reports.

Annually

Let's Look Through the Plant

Bioremediation

On-Site Brewing System

Sewage Ingress - Before Treatment

Bio-cells Installed

After Treatment

- NZ Patent Agent
- E. Coli controlled
- Sludge Separation
- Reduced ammonia, phosphates, nitrates & suspended solids
- Improved fauna & flora

Any Questions?

Thank you